Catastrophic bifurcation from riddled to fractal basins.

نویسندگان

  • Y C Lai
  • V Andrade
چکیده

Most existing works on riddling assume that the underlying dynamical system possesses an invariant subspace that usually results from a symmetry. In realistic applications of chaotic systems, however, there exists no perfect symmetry. The aim of this paper is to examine the consequences of symmetry-breaking on riddling. In particular, we consider smooth deterministic perturbations that destroy the existence of invariant subspace, and identify, as a symmetry-breaking parameter is increased from zero, two distinct bifurcations. In the first case, the chaotic attractor in the invariant subspace is transversely stable so that the basin is riddled. We find that a bifurcation from riddled to fractal basins can occur in the sense that an arbitrarily small amount of symmetry breaking can replace the riddled basin by fractal basins. We call this a catastrophe of riddling. In the second case, where the chaotic attractor in the invariant subspace is transversely unstable so that there is no riddling in the unperturbed system, the presence of a symmetry breaking, no matter how small, can immediately create fractal basins in the vicinity of the original invariant subspace. This is a smooth-fractal basin boundary metamorphosis. We analyze the dynamical mechanisms for both catastrophes of riddling and basin boundary metamorphoses, derive scaling laws to characterize the fractal basins induced by symmetry breaking, and provide numerical confirmations. The main implication of our results is that while riddling is robust against perturbations that preserve the system symmetry, riddled basins of chaotic attractors in the invariant subspace, on which most existing works are focused, are structurally unstable against symmetry-breaking perturbations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transverse instability and riddled basins in a system of two coupled logistic maps

Riddled basins denote a characteristic type of fractal domain of attraction that can arise when a chaotic motion is restricted to an invariant subspace of total phase space. An example is the synchronized motion of two identical chaotic oscillators. The paper examines the conditions for the appearance of such basins for a system of two symmetrically coupled logistic maps. We determine the regio...

متن کامل

Extreme fractal structures in chaotic mechanical systems: riddled basins of attraction

Chaotic dynamical systems with certain phase space symmetries may exhibit riddled basins of attraction, which can be viewed as extreme fractal structures in the sense that, regardless of how small is the uncertainty in the determination of an initial condition, we cannot decrease the fraction of such points that are certain to converge to a given attractor. We investigate a mechanical system ex...

متن کامل

Synchronization and basins of Synchronized States in Two-Dimensional piecewise Maps via Coupling Three Pieces of One-Dimensional Maps

This paper is devoted to the synchronization of a dynamical system defined by two different coupling versions of two identical piecewise linear bimodal maps. We consider both local and global studies, using different tools as natural transversal Lyapunov exponent, Lyapunov functions, eigenvalues and eigenvectors and numerical simulations. We obtain theoretical results for the existence of synch...

متن کامل

Coexisting Attractors and Complex Basins in Discrete-time Economic Models

In this lesson we consider discrete time dynamical systems with coexisting attractors, and we analyze the problem of the structure of the boundaries that separate their basins of attraction. This problem may become particularly challenging when the discrete dynamical system is represented by the iteration of a noninvertible map, because in this case nonconnected basins can be obtained, formed b...

متن کامل

The Nature of Attractor Basins in multistable Systems

In systems that exhibit multistability, namely those that have more than one coexisting attractor, the basins of attraction evolve in specific ways with the creation of each new attractor. These multiple attractors can be created via different mechanisms. When an attractor is formed via a saddle-node bifurcation, the size of its basin increases as a power-law in the bifurcation parameter. In sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 64 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001